Dik ve Özel Üçgenler-2 - TYT AYT 2023 (YKS 2023) Uzaktan Eğitim

Sınavlara CANLIDERSHANE.NET Uzaktan Eğitim ile hazırlanın kazanın

  • İKİZKENAR ÜÇGEN

İkizkenar üçgenin tepe açısından tabanına çizilen yükseklik, hem açıortay, hem de kenarortaydır.

1. Bir üçgende, açıortay aynı zamanda yükseklik ise bu üçgen ikizkenar üçgendir.
|AB| = |AC|
|BH| = |HC|
m(B) = m(C)

2. Bir üçgende, açıortay aynı zamanda kenarortay ise bu üçgen ikizkenar üçgendir.
|AB| = |AC|,
[AH] ^ [BC]
m(B) = m(C)

3. Bir üçgende, yükseklik aynı zamanda kenarortay ise bu üçgen ikizkenar üçgendir.
|AB| = |AC|
m(BAH) = m(HAC)
m(B) = m(C)
İkizkenar üçgende açıortay, kenarortay ve yüksekliğin aynı olması birçok yerde karşımıza çıktığından çok iyi bilinmesi gereken bir özelliktir.

4. İkizkenar üçgende ikizkenara ait yükseklikler eşittir.

Bu durumda yüksekliklerin kesim noktasının ayırdığı parçalarda eşit olur.

5. İkizkenar üçgende ikizkenara ait kenarortaylar ve kenarortayların kesim noktasının ayırdığı parçalar da birbirine eşittir.

6. İkizkenar üçgende eşit açılara ait açıortaylar da eşittir.

Açıortaylar birbirini aynı oranda bölerler.

7. İkizkenar üçgende ikiz olmayan kenar üzerindeki herhangi bir noktadan ikiz kenarlara çizilen dikmelerin toplamı, ikizkenarlara ait yüksekliği verir.

|AB| = |AC|  Þ |LC| = |HP| + |KP|

8. İkizkenar üçgende tabandan ikiz kenarlara çizilen paralellerin toplamı, ikiz kenarların uzunluğuna eşittir.

EŞKENAR ÜÇGEN
1. Eşkenar üçgende bütün açıortay, kenarortay yükseklikler çakışık ve hepsinin uzunlukları eşittir.
nA = nB = nC = Va = Vb = Vc = ha = hb = hc 

2. Eşkenar üçgenin bir kenarına a dersek yükseklik 

Bu durumda eşkenar üçgenin alanı 

3. Eşkenar üçgenin içindeki herhangi bir noktadan kenarlara çizilen dik uzunlukların toplamı, eşkenar üçgene ait yüksekliği verir.
Bir kenarı a olan eşkenar üçgende;


4. Eşkenar üçgenin içindeki herhangi bir noktadan kenarlara çizilen paralellerin toplamı bir kenar uzunluğuna eşittir.

Bir kenarı a olan ABC eşkenar üçgeninde